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Formation of a-D-glucose-1-phosphate by thermophilic a-1,4-D-
glucan phosphorylase
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For the production of «-D-glucose-1-phosphate (G-1-P), «a-1,4-D-glucan phosphorylase from  Thermus caldophilus
GK24 was partially purified to a specific activity of 13 U mg ~1 and an enzyme recovery of 15%. The amount of G-1-
P reached maximum (18%) when soluble starch was used as substrate, and the smallest substrate for G-1-P forma-

tion was maltotriose. The structure of purified G-1-P was confirmed by comparison to 13C-NMR data for an authentic
sample. In addition to G-1-P, glucose-6-phosphate (12%) was simultaneously produced when 10 mM maltoheptaose

was used as substrate. Journal of Industrial Microbiology & Biotechnology (2000) 24, 89—-93.
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Introduction of G-1-P and G-6-P have been incompletely documented
a-p-Glucose-1-phosphate (G-1-P) and glucose—6—phospha{(ra] I;h: gtr?jriﬁtureeﬁz matic G-1-P and G-6-P production, ther-
(G-6-P) are found in all living organisms [3,6] and are com- g g y n ’

mercially valuable compounds with possible applications inmostable enzymes are more useful for industrial appli-

the development of a wide range of specialty chemicals a:gatmn. There are a number of advantages in using thermo-

medicines. G-1-P has been used as a starting material f éﬁglr? reegairgﬁsﬁﬁg)h'?gssteéﬂﬁf,rcaéuﬁs}nfg%tbiﬁaggg?anz?.te
synthesis of glucuronic acid which is used as a calciu g

. . 1ation, prolonged stability, and eventually high productivity
complexant and as a substrate for further biosynthetic rea 2]. Although examinations of the purification of GP have

tions to yield linear maltooligosaccharidesara-trehalose :
[18]. G-1-P can be used as a cytostatic compound essenti?rfen don(_a [1,17,18], more _data are requweq to apply
ermophilic enzymes to practical G-1-P production. In this

for cardiopathic therapy, as an antibiotic, as an immunosup- per, we report the formation of G-1-P and G-6-P from

pressive drug, and as a circulatory system therapy EIemeﬁﬁaltooligosaccharides or soluble starch using partially pur-

[12,16]. G-6-P_has been l.Jsed as a model com_pound fcHgied thermostable enzyme mixtures from a thermophilic
ATP.regene(athn along W't.h glucose and hexokinase [S]bacterium Thermus caldophilu§&K24. The effect of sub-
but its application area still remains to be developed. ’ :

Besides the two compounds G-1-P and G-6-P, phosphorygf‘é{is_Sn::]réhgig?spiga;lesgodr}ggggsaetgns on the formation
ase itself can be used as a biosensopftinophosphate [7]. '
Two main routes for the enzymatic formation of G-1-P
without consuming ATP are: (1) using sucrose phosphorylMaterials and methods
ase (SP, EC 2.4.1.7) with sucrose as a substrate [10,16]; aWaterials

(2) using a-1,4-p-glucan phosphorylase (GP, ledglucan Glucose and maltooligosaccharides (G2—-G7) used as sub-
orthophosphatex-p-glucosyltransferase, EC 2.4.1.1) with . : X

. trates were purchased from Sigma Chemical Co (St Louis,
starch or maltodextrin as substrates [1,14,17]. From a O, USA). Soluble starch was purchased from Junsei
economical point of view, the production of G-1-P from an Chemical Co (Tokyo, Japan). DEAE-Sephacel was sup-

inexpensivea-np-glucan such as starch or dextrin is more ~. P ;-
appealing than that from sucrose. Conventionally, G—G—ﬁ)hfsduf;%rg i':htﬁggnzfdgyBﬁé?ghoggzg? yt}i<c(:)a|1f:gg;.r a%gler chemi

has been prepared by phosphoglucomutase-catalyzed re&&
tion from G-1-P, or by the activation of glucokinase at the
presence of glucose and ATP [8]. Despite the numerou
useful applications, processes for the enzymatic formatio

Partial purification of a-1,4-p-glucan phosphorylase
Thermus caldophilu&K24 was obtained from Professor T
'Ohta at the Department of Agricultural Chemistry, Univer-
sity of Tokyo.T. caldophiluscells were grown as described
in Ko et al [9]. Cells from 10 liters of the medium were
harvested at their half-maximum growth level. They were
Correspondence: H-J Shin, Microbial & Bioprocess Engineering Lab,suspended in a 2-fold volume of buffer A (50 mM potass-
gg;ei‘lge?euﬁgg: '”igggenf’fl(?rfé?ie”ce and Biotechnology (KRIBB), POjym phosphate buffer, pH 7.0) and then disrupted in an ice
2Current’addresg': De;J)art’ment of Chemistry, University of California, bath using ar_] ultrasonic homogenizer (_COIe'Parmer Instru-
Berkeley, USA ment Co, Chicago, IL, USA). Cell debris was removed by
Received 12 May 1999; accepted 29 August 1999 centrifugation at 17008 g for 1 h at £C and the super-
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natants were used as the cell-free extracts. After additioa Carbopac PA-1 column (250 mm) and eluted with

of ammonium sulfate to a final concentration of 50%, pre-200 mM NaOH and 200 mM NaOAc from 0 to 30 min with

cipitated proteins were collected by centrifugation ata flow rate of 2.5 ml mint. The eluate for each peak was

17000x% g for 30 min at 4C and the precipitate dissolved neutralized with 3 N HSO, through an anion micromem-

in buffer A was dialyzed against the same buffer. Thebrane suppressor, then collected and lyophilized. This step

dialyzed solution was applied on a DEAE-Sephacel columrwas repeated several times.

(2.5x 8 cm) equilibrated with buffer A. The proteins were

eluted at a flow rate of 1 ml mih with a step gradient of Nuclear magnetic resonance spectroscopy

0, 0.175 M, and 1 M NaCl in buffer A. Fractions eluted at NMR spectra were obtained on a JEOL JNM-LA 400 spec-

0.175 M NaCl were pooled and used without further puri-trometer with *H-NMR at 400 MHz and**C-NMR at

fication. Fractions from the chromatography step werel00 MHz. Samples were exchanged at least twice j® D

assayed for phosphorylase activity. before obtaining the spectra. Chemical shifts are given in
ppm using sodium 2,2-dimethyl-2-silapentatne-5-sulphon-

Enzymatic synthesis of a-p-glucose-1-phosphate and ate (DSS) as the internal standard.

glucose-6-phosphate

A reaction mixture (1 ml) containing 0.1 ml of 100 mM Results

maltoheptaose (G7) solution and 0.9 ml of the enzyme sol-

ution in 50 mM potassium phosphate buffer (pH 7.0) Partial purification of the enzyme

pooled from DEAE-Sephacel chromatography was incu-The a-1,4b-glucan phosphorylase (GP) from. caldo-

bated at 70C. Aliquots (0.1 ml) were taken from the reac- philus GK24 was partially purified by ammonium sulfate

tion mixture over a period of 12 h, and boiled for 15 min precipitation and anion-exchange chromatography steps.

to terminate the reaction. Denatured enzymes werd&he partially purified enzyme had a specific activity of

removed by centrifugation at 17000y for 15 min at #C. 13 U mg?* and was recovered at a final recovery yield of

The formation of products was monitored by high-perform-15% (Table 1). The specific activity of the purified enzyme

ance anion-exchange chromatography (HPAEC). is comparable to the values reported for GP from other bac-
teria such asT. thermophilus(18.1 U mg?) [1], E. coli
HPAEC analysis (18.6 U mg?) [18] and Corynebacterium callunaé83.5 U

HPAEC was carried out with a Dionex series 4500i chro-mg™) [17].

matography system with a pulsed amperometric detector

(Model PAD-II, Dionex Corp, Sunnyvale, CA, USA). For Simultaneous formation of a-p-glucose-1-phosphate
analytical purposes, a Carbopac PA-1 column X4 and glucose-6-phosphate

250 mm) was used. A sample (25 was injected and Maltoheptaose (G7,10 mM) was incubated with the enzyme
eluted with a gradient of sodium acetate (0—2 min, 100 mMjfrom T. caldophilusGK24 and the reaction mixture was
2—-14 min, increasing from 100 to 200 mM; 14-19 min, analyzed by HPAEC as shown in Figure 1. Both G-1-P and
200 mM; 19-21 min, increasing from 200 to 250 mM; and G-6-P started to form after 1 h along with maltooligosacch-
21-31 min, increasing from 250 to 500 mM) in 100 mM arides and glucose, indicating the existence of both GP and
NaOH with a flow rate of 1 ml mirt. Formation yields (%) phosphoglucomutase involved in phosphorolysis and phos-
were calculated from peak areas of HPAEC chromatogramphoryl shift, respectively. The formation of G-6-P was
of reaction mixture using authentic samples of G-1-P anddentified by comparison of its retention time in HPAEC

G-6-P. chromatograms with that of an authentic sample. As time
progressed, maltooligosaccharides appeared to be gradually
Assay hydrolyzed to glucose which eluted at the retention time of

A 90-ul aliquot of an enzyme solution dissolved in buffer 1.93 min while the amount of both G-1-P and G-6-P
A was mixed with 10ul of 100 mM substrate solution and increased, especially G-6-P. This process continued up to
incubated at 70C for 1 h, and the reaction was terminated 12 h, while most maltooligosaccharides were hydrolyzed to
by immersing the reaction tubes in boiling water for glucose after 12 h. At this point the amount of G-1-P
15 min. Released products were measured by HPAEC. Omgecreased slightly from its maximum amount (the yield was
unit (U) of activity is defined as the amount of enzyme 18% based on 10 mM maltoheptaose), but the G-6-P peak
which produces 1 nmol of G-1-P per min. The amount ofincreased significantly (the maximum yield was 12%).
protein was measured by the method of Bradford with bov-Therefore, it is suggested that G-1-P was converted into G-

ine serum albumin as the standard [2]. 6-P by the crude enzyme preparation.
Preparative-scale production and purification of a-p- Influence of substrates and phosphate concentration
glucose-1-phosphate The degradability of several substrates by GP fibntal-

A reaction mixture (20 ml) containing 2 ml of 100 mM G7 dophilus GK24 was determined in terms of the degree of
solution and 18 ml of the enzyme solution pooled fromconversion of each substrate into G-1-P measured by
DEAE-Sephacel chromatography was incubated &70r  HPAEC. GP fromT. caldophilusGK24 accepted a wide

5h and then boiled for 15 min to terminate the reaction.range of substrates, and maltose was not used as substrate
The denatured enzyme was removed by centrifugation, an@lable 2). Maltotriose (G3) was the smallest substrate for
the supernatant was lyophilized. The pellet was dissolve@P, unlike other phosphorylases whose smallest substrates
in 3 ml of distilled water and an aliquot was injected onto are much larger than G3 [15,18]. The amount of G-1-P
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Step Total protein Total activity Specific activity Purification factor
(mg) (Umg™) (-fold)
) % vyield
Cell-free extract 2458 7602 100 3.1 1
Ammonium sulfate precipitation 1058 4647 61 4.4 1.4
DEAE-Sephacel chromatography 85 1122 15 13 4.2
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Figure 1 HPAEC chromatograms of reaction mixture after (a) 1 h, (b)
6 h, and (c) 12 h of reactiorilndicates unidentified peaks. Analysis con-
ditions are described in Materials and methods.

Table 2 Effect of substrate size on G-1-P formation

Substrates Relative activity (%)
Glucose 0
Maltose (G2) 0
Maltotriose (G3) 8
Maltotetraose (G4) 13
Maltopentaose (G5) 33
Maltohexaose (G6) 41
Maltoheptaose (G7) 64
Soluble starch 100

“Relative activity is calculated from the peak area of G-1-P produced from
an HPAEC chromatogram.
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Figure 2 Influence of phosphate ion concentration on relative activity
(%) for G-1-P formation. Potassium phosphate was used as phosphate
ion source.

reached maximum when starch was the substrate revealing
that GP preferred a longer substrate like soluble starch. The
effect of the concentration ajrthophosphate on the reac-
tion with G7 confirmed that the initial concentration of
inorganic phosphate determines the equilibrium concen-
tration of G-1-P (Figure 2). High initial phosphate concen-
trations of up to 1 M were used without a negative effect.
Mg?* or F€* (2 mM each) had a weak activating effect on
G-1-P formation and Mt (2 mM) inhibited GP activity by
more than 50% (data not shown).
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% Structural analysis of a-p-glucose-1-phosphate According to HPAEC chromatograms (see Figure 1c),

To confirm the structure of the product, G-1-P produced18% conversion from maltoheptaose to G-1-P was attained
was isolated as described in Materials and methods. Thim phosphate-limiting condition (50 mM phosphate and
purity of G-1-P in fraction was 89.9% as calculated from 10 mM maltoheptaose). This value is comparable to that
the peak area on the HPAEC chromatogram. The structuneached by using@orynebacterium callunaphosphorylase

of G-1-P was identified by comparison t6€C-NMR data under a phosphate-limiting condition [17]. The degrees of
[13] of the authentic G-1-P. All the NMR data were conversion to G-1-P increase under a glucan-limited con-
assigned byH-'H COSY and'H-*C COSY. dition. If a-glucans are to be used as a substrate, a pretreat-
ment using pullulanase should be applied to give a high
yield because ofx-1,6-glycosidic branches present in the
molecules [11,18]. To our knowledge, there has been no
At first, we tried to set up a simple purification scheme forreport on the conversion yield of G-6-P from maltodextrins
obtaining considerable activity needed for G-1-P and G-6-0r maltooligosaccharides.

P formation. Until now, G-6-P has been treated as a useless In conclusion, this thermostable enzyme frdmcaldo-
by-product and other investigators devoted efforts to elimphilus GK24 can be used as an alternative enzyme source
inate phosphoglucomutase (G-%-PG-6-P) activity solely  for G-1-P formation from inexpensive substrates. In
for G-1-P formation [1,18]. However we view the use of addition, if phosphoglucomutase is present, G-6-P could be
partially purified enzyme advantageous especially for simproduced simultaneously.

ultaneous formation of G-1-P and G-6-P provided that sep-

aration of the products is facile. As for enzyme stability,

this enzyme solution has shown no decrease in GP activitfcknowledgements
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